
Journal of Electroceramics 5:2, 81±92, 2000

# 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Percolation in Composites

ARMIN BUNDE

Institut fuÈr Theoretische Physik III, Justus-Liebig-UniversitaÈ t Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
bunde@physik.uni-giessen.de

WOLFGANG DIETERICH

UniversitaÈ t Konstanz, FakultaÈ t fuÈr Physik, UnivesitaÈ tsstraûe 10, D-78457 Konstanz,
wolfgang.dieterich@uni-konstanz.de

Submitted September 15, 1999, Revised November 30, 1999; Accepted November 30, 1999

Abstract. Many properties of composite materials such as diffusion, electrical conduction, dielectric response as

well as elasticity, are intimately related to the geometrical arrangement of the constitutive phases, including the

geometry of the respective interfaces. Percolation theory, whose objective is to characterize the connectivity

properties in random geometries and to explore them with respect to physical processes, thus provides a natural

frame for the theoretical description of random composites. This article explains basic concepts of static

percolation theory and percolative transport, which subsequently are applied to speci®c experiments on

heterogeneous ionic conductors.
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1. Introduction

Percolation is a standard model for disordered

systems, with widespread applications in nature.

Here we focus on percolation models for composites.

It is essential to note that because of universality the

results following from percolation theory do not

depend on certain irrelevant details of the speci®c

model used, and general scaling laws can be deduced.

In the ®rst part of this review we give a brief intro-

duction into static aspects of the standard percolation

theory. In the second part, we describe quite generally

diffusion and electrical conduction in percolation

systems. In the third part, ®nally, we demonstrate the

utility of percolation concepts in understanding

electrical transport in composite ionic conductors,

where interfacial conduction plays a predominant role.

2. Lattice and Continuum Percolation

2.1. The Models

Percolation represents the basic model for a structu-

rally disordered system (for recent reviews see [1±3]).

For simplicity, let us consider a square lattice, where

each site is occupied randomly with probability p or is

empty with probability 1ÿ p (see Fig. 1). Occupied

and empty sites may stand for very different physical

properties. For illustration, let us assume that the

occupied sites are electrical conductors, the empty

sites represent insulators, and that electrical current

can only ¯ow between nearest-neighbor conductor

sites. Two-phase heterogeneous mixtures like AgCl/a-

AgI may be viewed as (three-dimensional) percola-

tion systems, where the occupied sites represent AgI

and the empty sites AgCl [4].

At low concentration p, the conductor sites are

either isolated or form small clusters of nearest-

neighbor sites. Two conductor sites belong to the

same cluster if they are connected by a path of

nearest-neighbor conductor sites, and a current can

¯ow between them. At low p values, the mixture is an

insulator, since no conducting path connecting

opposite edges of our lattice exists. At large p
values on the other hand many conducting paths

between opposite edges exist, where electrical current

can ¯ow, and the mixture is a conductor. At some

concentration in between, therefore, a threshold



concentration pc must exist where for the ®rst time

electrical current can percolate from one edge to the

other. Below pc we have an insulator, above pc we

have a conductor. The threshold concentration is

called the percolation threshold, or, since it separates

two different phases, the critical concentration.

A nice example of such a percolation system is

irradiated polyimide, where KrF excimer laser pulses

of an intensity greater than 20 mJ/cm2 induce a

conductivity change in a thin surface layer on the

polymer. The interaction of the intense laser pulse

with the polymer decomposes portions of a thin

surface layer into small carbon clusters of about 50 nm

diameter. These carbon clusters are electrically

conducting and represent the occupied sites. The

density of the carbon cluster can be increased by

successive laser shots. At the percolation threshold,

one observes conduction over macroscopic areas [5].

If the occupied sites are superconductors and the

empty sites are conductors, pc separates a normal-

conducting phase (below pc) from a superconducting

phase (above pc). A quite different example is a mixture

of ferromagnets and paramagnets, where the system

changes at pc from paramagnetic to ferromagnetic.

In contrast to the more common thermal phase

transitions, where the transition between two phases

occurs at a critical temperature, the percolation
transition described here is a geometrical phase
transition, which is characterized by the geometric

features of large clusters in the neighborhood of pc. At

low values of p only small clusters of occupied sites

exist. When the concentration p is increased the

average size of the clusters increases. At the critical

concentration pc a large cluster appears which

connects opposite edges of the lattice. We call this

cluster the in®nite cluster, since its size diverges in the

thermodynamic limit. When p is increased further the

density of the in®nite cluster increases, since more

and more sites become part of the in®nite cluster, and

the average size of the ®nite clusters, which do not

belong to the in®nite cluster, decreases. At p � 1,

trivially, all sites belong to the in®nite cluster.

The critical concentration depends on the details of

the lattice and increases, for ®xed dimension d, with

decreasing coordination number z of the lattice: For

the triangular lattice, z � 6 and pc � 1=2, for the

square lattice, z � 4 and pc%0:592746, and for the

honeycomb lattice, z � 3 and pc%0:6962. For ®xed z,

pc decreases if the dimension d is enhanced. In both

the triangular lattice and the simple cubic lattice we

have z � 6, but pc for the simple cubic lattice is

considerably smaller, pc%0:3116.

So far we have considered site percolation, where

the sites of a lattice have been occupied randomly.

When the sites are all occupied, but the bonds between

the sites are randomly occupied with probability q, we

speak of bond percolation (see Fig. 2a). Two occupied

bonds belong to the same cluster if they are connected

by a path of occupied bonds, and the critical

concentration qc of bonds (qc � 1=2 in the square

lattice and qc^0:2488 in the simple cubic lattice)

separates a phase of ®nite clusters of bonds from a

phase with an in®nite cluster.

If sites are occupied with probability p and bonds

are occupied with probability q, we speak of site±
bond percolation. Two occupied sites belong to the

same cluster if they are connected by a path of

nearest-neighbor occupied sites with occupied bonds

in between. For q � 1, site-bond percolation reduces

to site percolation, for p � 1 it reduces to bond

Fig. 1. Site percolation on the square lattice: The small circles represent the occupied sites for three different concentrations: p � 0:2, 0.59,

and 0.80. Nearest-neighbor cluster sites are connected by lines representing the bonds. Filled circles are used for ®nite clusters, while open

circles mark the large in®nite cluster.
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percolation. In general, both parameters characterize

the state of the system. Accordingly, a critical line in

�p; q� space separates both phases, which for p � 1

and q � 1 takes the values of the critical bond and site

concentrations, respectively.

Perhaps the most common example of bond

percolation in physics is a random resistor network,

where the metallic wires in a regular network are cut

randomly with probability 1ÿ q. Here qc separates a

conductive phase at large q from an insulating phase

at low q. A possible application of bond percolation in

chemistry is the polymerization process, where small

branching molecules can form large molecules by

activating more and more bonds between them. If the

activation probability q is above the critical concen-

tration, a network of chemical bonds spanning the

whole system can be formed, while below qc only

macromolecules of ®nite size can be generated. This

process is called a sol-gel transition. An example of

this gelation process is the boiling of an egg, which at

room temperature is liquid and upon heating becomes

a more solid-like gel. Site-bond percolation can be

relevant for gelation in dilute media.

The most natural example of percolation is

continuum percolation, where the positions of the

two components of a random mixture are not

restricted to the discrete sites of a regular lattice. As

a simple example, consider a sheet of conductive

material, with circular holes punched randomly in it

(see Fig. 2b). The relevant quantity now is the fraction

p of remaining conductive material. Compared with

site and bond percolation, the critical concentration is

further decreased: pc%0:312 for d � 2, when all

circles have the same radius. This picture can easily

be generalized to three dimensions, where spherical

voids are generated randomly in a cube, and

pc%0:034. Due to its similarity to Swiss cheese, this

model of continuous percolation is called the Swiss

cheese model. Similar models, where also the size of

the spheres can vary, are used to describe sandstone

and other porous materials.

In all cases, the percolation transition is character-

ized by the geometrical properties of the clusters in

the critical regime jpÿ pcj=pc 5 1 near pc. The

probability P? that a site belongs to the in®nite

cluster is zero below pc and increases above pc (in the

critical regime) as

P?*�pÿ pc�b �1�
This behavior is illustrated in Fig. 3. The linear size of

the ®nite clusters, below and above pc, is character-

ized by the correlation length x. The correlation

length is de®ned as the mean distance between two

sites on the same ®nite cluster and represents the

characteristic length scale in percolation. When p
approaches pc, x increases as

x*jpÿ pcjÿ� �2�
with the same exponent � below and above the

threshold (see also Fig. 3).

Very important is the universal behavior of these

static exponents: While pc depends explicitly on the

type of percolation system considered, the critical
exponents b and � are universal and depend neither on

the structural details of the lattice (e.g., square or

triangular) nor on the type of percolation (site, bond,

or continuum), but only on the dimension d of the

Fig. 2. Further percolation systems: (a) Bond percolation cluster on a square lattice and (b) continuum percolation of circular discs with

®xed radius at the percolation threshold.
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lattice. The values of the critical exponents are given

in Table 1 for two and three dimensions.

2.2. The Fractal Structure of Percolation Clusters
near pc

Near pc on length scales smaller than x both the

in®nite cluster and the ®nite clusters are self-similar,

i.e., if we cut a small part out of a large cluster,

magnify it to the original cluster size and compare it

with the original, we cannot tell the difference: Both

look the same. On length scales well above x, the

in®nite percolation cluster is a compact structure, but

below x the cluster is a fractal and self-similar. This

feature is illustrated in Fig. 4, where the in®nite

percolation cluster above pc is shown in four different

magni®cations. When the scale is suf®ciently small

(as in the two ®gures on the bottom), the cluster is

selfsimilar and original and further magni®cations do

not change the essential picture.

For comparison, Fig. 5 shows a real percolation

cluster close to the critical concentration, made of a

thin gold ®lm evaporated on amorphous Si3N4. Both

the arti®cial cluster at small length scales and the

natural cluster look quite the same.

As a consequence of the (non-trivial) self-

similarity on length scales below x, the cluster is

characterized by a ``fractal'' dimension: The mean

mass of the cluster within a circle of radius r increases

with r as M�r�*rdf with the ``fractal dimension'' df .

The numerical values of df can be found in Table 1.

Above pc on length scales larger than x the in®nite

cluster can be regarded as a homogeneous system

which is composed of many cells of size x.

Mathematically, this can be summarized as

M�r�* rdf if r 5 x

rd if r 4 x

�
�3�

The fractal dimension df can be related to b and �
in the following way: Above pc, the mass M? of the

in®nite cluster in a large lattice of size Ld is

proportional to LdP?. On the other hand, this mass

is also proportional to the number of unit cells of size

x; �L=x�d, multiplied by the mass of each cell which is

proportional to xdf . This yields (with Eqs. (1) and (2))

M?*LdP?*Ld�pÿ pc�b*�L=x�dxdf

*Ld�pÿ pc��dÿ�df �4�
and hence, comparing the exponents of �pÿ pc�,

df � d ÿ b
�

�5�

Since b and � are universal exponents, df is also

universal.

3. Diffusion and Conductivity

3.1. Equivalence Between Diffusion and
Conduction

Electrical conduction is one of the most common

probes in the investigation of composites. To

Table 1. Critical exponents and fractal dimensions for percolation in two and three dimensions. The numerical values are taken from [1]. (As is

always the case in critical phenomena, the power±law dependencies only hold in the critical regime, see also Table 2.)

Quantity Exponent d � 2 d � 3

Order parameter P?�p�*�pÿ pc�b b 5/36 0.417 + 0.003

Correlation length x�p�*jpÿ pcjÿ� � 4/3 0.875 + 0.008

Cluster mass M�r�*rdf df 91/48 2.524 + 0.008

Fig. 3. Schematic diagram of the probability P? (bold line, see

Eq. (1)) and the correlation length x (thin line, see Eq. (2)) versus

the concentration p of occupied sites.
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interprete such measurements it is therefore necessary

to develop theoretical tools for calculating the

macroscopic (averaged) conductivity s of a hetero-

geneous material. An ef®cient procedure is to exploit

the well-known equivalence between conduction and

diffusion problems.

In the special case of a dilute system of charged

defects, the conductivity s and the defect diffusion

constant D are related by the Nernst-Einstein relation,

see Eq. (7). Moreover, irrespective of microscopic

details of the conduction mechanism, an exact

equivalence between an electrostatic problem and a

corresponding stationary diffusion problem can be

established on purely macroscopic grounds. Let s�~r �
denote the local conductivity in a heterogeneous

material and D�~r � the local diffusion constant in the

diffusion problem, where D�~r � has the same spatial

dependence as s�~r �. Obviously, Ohm's law for the

electrical current density, ~jel�~r � � ÿ s�~r �~Hj�~r � and

Fick's law for the diffusion current density,
~jD � ÿD�~r �~Hp�~r � are formally identical. Here

j�~r � and p�~r � denote the electrostatic potential and

Fig. 4. Self-similarity of the in®nite percolation cluster on the square lattice above the critical concentration � p � 0:595�. In the upper left

®gure, the length of the system is larger than the correlation length, and therefore the cluster looks compact. The linear size of the two

bottom ®gures is smaller than the correlation length, exhibiting the self-similar structure of the cluster at suf®ciently small length scales

(courtesy of J. Kantelhardt).
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the density of diffusing particles, respectively. Under

stationary conditions, both currents have zero diver-

gence within the medium. Hence the two problems of

calculating the total conductivity s and the total

diffusion constant D are mathematically equivalent.

Often, calculation of D through random walk theories

and stochastic simulation is more ef®cient than

directly solving the electrostatic equations. In the

next two subsections we shall therefore concentrate

on concepts of diffusion in ordered and disordered

media, which in most cases are represented in the

form of discrete networks.

3.2. Transport in Regular Lattices

After we have discussed the structural properties of

percolation systems close to the percolation threshold,

see section 2, we will now focus on the dynamical
properties of percolation systems, where to each site

or bond a physical property such as conductivity is

assigned. We show that due to the fractal nature of the

percolation clusters near pc, the physical laws of

dynamics are changed essentially and become

anomalous.

At ®rst, we consider regular lattices. The diffusion

process is commonly modeled by a simple random

walk, which advances one step of length ` in one time

unit t. Each step brings the random walker to a

randomly chosen nearest-neighbor site on a given d-

dimensional lattice. Assuming that jumps at different

steps are uncorrelated, we obtain hr2�t�i � `2t=t,

which is equivalent to Fick's ®rst law. In the general

case, when the lengths ` of the steps of the random

walker as well as the time t between successive steps

may vary, this relation is modi®ed into

hr2�t�i � 2dDt �6�
where D � h`2i=hti is the diffusion coef®cient. The

brackets are averages over many steps and con®gura-

tions. The diffusion coef®cient is related to the dc-

conductivity sdc by the Nernst-Einstein equation,

sdc � n�e2=kBT�D �7�
where n is the density and e the charge of the diffusing

particles. Next we consider disordered structures.

3.3. Percolation Clusters

We start with the in®nite percolation cluster at the

critical concentration pc. The cluster has loops and

dangling ends, and both substructures slow down the

motion of a random walker. Due to self-similarity,

loops and dangling ends occur on all length scales,

and therefore the motion of the random walker is

slowed down on all length scales. The time t the

walker needs to travel a distance R is no longer, as in

regular systems, proportional to R2, but scales as

t*Rdw , where dw42 is the fractal dimension of the
random walk [1,2]. For the mean-square displacement

this yields immediately

hr2�t�i*t2=dw �8�
The fractal dimension dw is approximately equal to

3df =2 [7]; the results of numerical simulations can be

found in Table 1. For continuum percolation (Swiss

cheese model) in d � 3, dw is enhanced: dw%4:2 [8].

Diffusion processes described by Eq. (8) are generally

referred to as anomalous diffusion.
Above pc, fractal structures occur only within the

correlation length x�p� given by Eq. (2). Thus the

anomalous diffusion law, Eq. (8), occurs only below

the corresponding crossover time tx*R�tx�dw*xdw ,

which decreases proportional to �pÿ pc�ÿ�dw , if p is

further increased. Above tx, on large time scales, the

random walker explores large length scales where

the cluster is homogeneous, and hr2�t�i follows

Fick's law (Eq.(6)), increasing linearly with time t.
Thus,

hr2�t�i* t2=dw if t5 tx

t if t 4 tx

(
�9�

Fig. 5. Gold ®lm evaporated on amorphous Si3N4 (after [6]).
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The diffusion coef®cient is related to the dc-

conductivity sdc by the Nernst-Einstein equation, Eq.

(7). Below pc, there is no current between opposite

edges of the system, and sdc � 0. Above pc, sdc

increases by a power law (see Fig. 6 for illustration),

sdc*�pÿ pc�m �10�
where the critical exponent m is (semi)-universal. For

percolation on a lattice, m depends only on d; the

numerical results are contained in Table 2. For

continuum percolation (Swiss cheese model) in

d � 3, however, m is enhanced: m % 2.38.

Combining Eqs. (7) and (10), we can obtain the

behavior of the diffusion coef®cient D as a function of

pÿ pc. Since only the particles on the in®nite cluster

contribute to the dc conductivity, we have ( from Eq.

(1)) n*P?*�pÿ pc�b in Eq. (7). This yields

D*�pÿ pc�mÿb �11�
Next we use scaling arguments (see, e.g., [1,2]) to

relate the exponent m to dw. Equations (11) and (6)

imply that above tx, the mean-square displacement

hr2�t�i behaves as

hr2�t�i*�pÿ pc�mÿbt; t4tx �12�
On the other hand we know that for times below tx on

distances r5t
1=dw

x ,

hr2�t�i*t2=dw ; t5tx �13�

By de®nition, for t � tx, we have hr2�t�i*x2.

Substituting this into Eqs. (12) and (13) and equating

both relations we obtain immediately �pÿ pc�mÿb
tx*t

2=dw

x . Using tx*xdw*�pÿ pc�ÿ�dw (from Eq. (2))

we get the relation between m and dw,

dw � 2� �mÿ b�=� �14�

3.4. Resistor±Capacitor Networks and ac-
Conductivity

The random walk problems or the equivalent

random resistor networks discussed in the foregoing

subsection are now generalized to the case of an

arbitrary two-component (AB) network, which can

serve as an equivalent circuit model for the

electrical properties at non-zero frequencies of

arbitrary two-phase composites. Let us assume that

each bond in the network represents (with prob-

ability p) a resistor with resistance 1=s0
A in parallel

with a capacitor with capacitance CA, or (with

probability 1ÿ p) a resistor with resistance 1=s0
B in

parallel with a capacitor with capacitance CB.

The (complex) conductance of each bond is there-

fore either sA � s0
A � ioCA or sB � s0

B � ioCB. At

the percolation threshold, p � pc, the total con-

ductance in the case jsAj4 jsBj follows a power-

law [1,9,10]

s�o�*sA�sA=sB�ÿu �15�
where the exponent u has values u � 0:5 in d � 2 and

u^0:71 in d � 3.

For extending this result to the critical regime

below and above pc, we multiply Eq. (15) by a

complex scaling function S+�z� that depends on

z � jpÿ pcj�sA=sB�F. The two signs refer to the two

different cases above and below pc. Thus, for

jpÿ pcj=pc 5 1, we write [11,12]

s�o� � sA�sA=sB�ÿu ? S+�jpÿ pcj�sA=sB�F� �16�
where, on account of Eq. (15), both S� and Sÿ become

a constant as jzj?0. The exponent F as well as the

asymptotic behavior of the scaling functions is

determined by the asymptotic behavior of s�o� in

the limit o ? 0 and jsA=sBj??.

Let us concentrate ®rst on the resistor±capacitor

(R±C) limit, where sA � s0
A and sB � ioCB, which

pertains to random mixtures of a conductor and a

dielectric. Below pc, we have an insulator so that s�o�

Fig. 6. Schematic diagram of the (usual) dc±conductivity sdc

(bold line, see Eq. (10)) and the conductivity sS for a conductor-

superconductor percolation network (see section 3.4, thin line for

p5pc) versus the concentration p of occupied sites. The cluster

capacitance C is proportional to ss for p5pc and diverges with

the same exponent for p4pc (see Eq. (17)).
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must behave as s�o�^ioC for o ? 0, with C the

capacitance of the whole system. To satisfy this

condition we must require Sÿ�z�^zÿs for jzj4 1,

with s � �1ÿ u�=F. It follows that [11]

C*jpÿ pcjÿs �17�
On approaching the percolation threshold, the total

capacitance therefore diverges according to the

critical exponent s. This divergence of C has a

simple physical interpretation: each pair of neigh-

bored clusters forms a capacitor. The effective surface

increases when pc is approached and tends to in®nity

at pc. Accordingly, the effective capacitance C of the

system also diverges. Taking the limit jsAj?? in

Eq. (16) it is easily seen that the same exponent s
describes the divergence of the total conductivity near

pc in a normal conductor±superconductor network (cf.

also Fig. 6).

On the other hand, Eq. (16) for p4pc must be

consistent with sdc*�pÿ pc�m, (see section 3.3),

requiring that S��z�^zm for jzj4 1 and u � Fm.

Combining the above relations for the scaling

exponent F, we can reexpress u and F in terms of s
and m, which yields

u � m
m� s

; F � 1

m� s
�18�

Next, we study a random mixture of a good

conductor (A) and a ``leaky dielectric'' (B), where

s0
A=s

0
B � t4 1: From Eq. (16) it is clear that for

jpÿ pcjtF 5 1 the ac-conductivity is given by

s�o�*sAt
ÿu�1� ioCB=s

0
B�u �19�

Keeping t ®xed and approaching pc, the total

capacitance therefore exhibits a peak with a maximum

C*t1ÿu �20�
at the percolation threshold.

To describe the ac-response of conductor±dielec-

tric mixtures at higher frequencies, inductive elements

can be included in the model. RLC-networks have in

fact been studied in connection with the optical

response of metal±dielectric composites [13].

3.5. Computational Methods

In section (3.1) we have seen that the zero-frequency

conductivity sdc of a heterogeneous mixture can be

obtained via the random walk methodology. In fact,

most studies in the literature concerning percolative

transport in random mixtures, including critical

exponents for percolation and the associated scaling

properties, habe been obtained from simulations of the

time-dependent mean-square displacement of a

random walker. Monte Carlo and exact enumeration

techniques are most common in that respect [14]. Ac-

properties of mixtures, modeled for example by

apropriate resistor±capacitor networks, can be calcu-

lated ef®ciently by the transfer-matrix method. For

details we refer to the original work of Derrida and

Vannimenus [15].

In many cases one is interested predominantly in

the overall behavior of a mixture rather than in its

detailed critical properties near a percolation

threshold. Various forms of effective medium theory

(EMT) [16] are useful in that respect. Concerning

disorder and the percolation transition, the EMT plays

a role analogous to mean-®eld theory in the context of

thermal phase transitions. The simplest case is the

single-bond EMT for bond-disordered networks. Let

us assume a d-dimensional simple cubic multi-

component network, where with probability pa a

bond has conductance sa. According to the EMT, the

effective conductance of bonds, seff , then is derived

from the equationX
a

pa
seff ÿ sa

�z=2ÿ 1�seff � sa
� 0 �21�

where z � 2d is the coordination number of the

network. Generally, near a percolation transition, the

EMT yields mean-®eld critical exponents m � s � 1,

independent of d. Extensions of the EMT to

topologically disordered networks [17], continuous

Table 2. Dynamical exponents for percolation in two and three dimensional lattices. The numerical values are taken from [1]

Quantity Exponent d � 2 d � 3

Random Walk hr2�t�i*t2=dw dw 2.871 + 0.001 3.80 + 0.02

Conductivity sdc�p�*�pÿ pc�m m 1.30 + 0.002 1.99 + 0.01

Superconductivity sS�p�*�pÿ pc�ÿs s 1.30 + 0.002 0.74 + 0.03
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media containing spherical or ellipsoidal inclusions

[18±20] and random walks in the presence of

energetic disorder [21,22] have also been studied

extensively in the literature.

A more accurate way for obtaining dc- and ac-

properties of bond-disordered networks is to use the

real-space renormalization group approximation

(RNG) [23,24]. The idea of this approach is to map

the original network onto a coarse-grained, renorma-

lized network where ¯uctuations in the local

conductances on small scales have been averaged

over. Iterating this procedure, one ends up with an

ordered lattice, unless the iteration is started at a

critical point, to be identi®ed as a ®xed point of that

mapping. The RNG can well account for the overall

conductance properties of the network and, in contrast

to the EMT, yields non-trivial static and dynamic

critical exponents. In d � 2 exact bond-transforma-

tions are known such that a ®nite network can be

replaced by one effective bond [25].

4. Heterogeneous Ionic Conductors

4.1. Interfacial Percolation and the Liang-Effect

Let us now turn to percolation models that describe

electrical transport in speci®c composite materials. A

substantial amount of research has concentrated on

``dispersed ionic conductors'' after the discovery by

Liang [26] that insulating ®ne particles with sizes of

the order of 1 mm, dispersed in a conductive medium

(e.g., Al2O3 in LiI), can lead to a conductivity

enhancement [27]. This effect has been found to

arise from the formation of a defective, highly

conducting layer following the boundaries between

the conducting and the insulating phase [28].

Effectively, the system thus contains three phases.

Theoretical studies therefore have focused on suitable

three-component impedance network models.

Figure 7 shows a two-dimensional illustration of

such composites and a corresponding discretized

model [29,30]. In its simplest version this model is

constructed by randomly selecting a fraction p of

elementary squares on a square lattice, which

represent the insulating phase (C), while the

remaining squares are the conducting phase (B). The

distribution of both phases leads to a correlated bond

percolation model with three types of bonds and

associated bond conductances sa; a � A;B;C; as

de®ned in Fig. 7. For example, bonds in the boundary

between phases B and C correspond to the highly

conducting component (A). The analogous construc-

tion for three dimensions is obvious. Finite-frequency

effects are readily included, when we allow bond

conductances to be complex [31]. For simplicity, we

may assume the ideal behavior sa � s0
a � ioCa,

including constant zero-frequency conductances s0
a

and capacitance elements Ca, but more general forms

can be chosen when necessary. Clearly, the experi-

mental situation described above requires that

s0
A=s

0
B � t4 1; s0

C � 0. Thereby it is natural to

assume that s0
A and s0

B are thermally activated, such

that their ratio t! exp�ÿ DE=kBT� increases with

decreasing temperature.

A remarkable feature of this model is the existence

of two threshold concentrations. At p � p0c, interface

percolation (i.e., percolation of A-bonds) sets in,

whereas at p � p00c � 1ÿ p0c (normally not accessible

by experiment) the system undergoes a conductor-

insulator transition. In two dimensions �d � 2� we

have p0c � 0:41, while in d � 3, p0c � 0:097, corre-

Fig. 7. Illustration of a three-component percolation model for dispersed ionic conductors, for different concentrations p of the insulating

material. The insulator is represented by the gray area, the ionic conductor by the white area. The bonds can be highly conducting (A-

bonds, bold lines), normal conducting (B-bonds), or insulating (C-bonds). (a) p5p0c, (b) p � p0c, (c) p � p00c , (d) p4p00c (redrawn after [30]).
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sponding to the threshold for second-neighbor

�d � 2� and third-neighbor �d � 3� site percolation

on a d-dimensional cubic lattice, respectively. At zero

frequency, the total conductivity can be obtained from

Monte Carlo simulation [29,30].

Figure 8 shows results for d � 3 and three different

temperatures (corresponding to t � 10; 30 and 100).

Good agreement with the experimental curves [32] is

achieved, which show a broad maximum in the

conductivity as a function of p in the range between

the two thresholds. Changing t (by varying the

temperature) offers the possibility to interpret the

measured activation energies as a function of p [33]

and, in principle, also to detect the critical transport

behavior associated with interface percolation. In the

vicinity of p0c it seems interesting in addition to study

critical ac-effects. For example, at p0c the effective

capacitance develops a peak, whose height should

scale with t as Ceff*t1ÿu, where u � m=�m� s�, see

subsection 3.4. Ac-properties in the whole range of p-

values have been calculated by renormalization group

techniques (see subsection 3.5) [31].

Several extensions of this model are conceivable.

In the case of dc-transport �o � 0�, the variation of

the total conductivity with the size of dispersed

particles has been calculated and successfully

compared with experiments [34,35,37]. In particular,

it was found that as the particle size decreases while

the thickness of the highly conducting interfacial

layer is ®xed, the maximum in the total conductivity

as a function of the insulator concentration p shifts

to smaller values of p. The observation of

conductivity maxima at very low volume fractions

(^10%) in certain composite electrolytes, however,

was interpreted recently by a grain boundary

mechanism within the bulk of the electrolyte phase

[36].

Related work also emphasized aspects of con-

tinuum percolation in dispersed ionic conductors [35],

which, depending on the geometrical conditions, can

lead to dynamical critical properties differing from

lattice percolation (see subsection 3.3).

4.2. Composite Micro- and Nanocrystalline
Conductors

In the foregoing section, we have discussed dispersed

ionic conductors that were prepared by melting the

ionic conductor and adding the insulator (mainly

Al2O3) to it. Next we consider diphase micro- and

nanocrystalline materials, which were prepared by

mixing the two different powders and pressing them

together to a pellet. This way, in contrast to the classic

dispersed ionic conductors discussed above, the grain

size of both ionic conductor and insulator can be

varied over several orders of magnitude. For reviews

on nanocrystalline materials, see e.g., [39±41].

Very recently, the ionic conductivity of micro- and

Fig. 8. (a) Normalized conductivity of the LiI-Al2O3 system as a function of the mole fraction p of Al2O3 at different temperatures (after

[32]). (b) Normalized conductivity resulting from Monte Carlo simulations of the three-component percolation model, as a function of p,

for s0
A=s

0
B � 10 (circles), 30 ( full squares), and 100 (triangles) (after [30]).
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nanocrystalline �1ÿ x�Li2O: xB2O3 composites, for

different content x of insulator B2O3, has been studied

by Indris et al. [38]. In the nanocrystalline samples,

with an average grain size of about 20 nm, the dc-

conductivity increases with increasing content of

B2O3 up to a maximum at x&0:5. Above 0.92, the

dc-conductivity vanishes.

In contrast, in the microcrystalline samples (grain

size about 10 mm), the dc-conductivity decreases

monotonically with x and seems to vanish above

x&0:55 (see Fig. 9). The activation energy remains

almost constant in both cases, Eact%1 eV, for all x-

values.

To explain these surprising experimental observa-

tions, Indris et al. assumed that (as for the classical

dispersed ionic conductors) (i) B2O3 acts as an

insulator for the lithium ions, (ii) the mobility of the

Li-ions along the diphase boundaries between ionic

conductor and B2O3 is larger than in the bulk lithium

oxide, and (iii) that the thickness l of this highly

conducting interface is independent of the grain size.

For a quantitative treatment one has to note that

the insulator content x is related to the volume

fraction p (considered in percolation theory)

by p � ax=�axÿ x� 1�, where a � Vmol�B2O3�=
Vmol�Li2O�&1:9065 is the ratio between the mole

volumes. Accordingly, the experimental results

suggest the existence of two different percolation

thresholds for the conduction paths, pc&0:7 for the

microcrystalline samples and pc&0:96 for nanocrys-

talline ones, above which the dc-conductivity of the

composite vanishes.

These different thresholds can be understood by

simple geometrical arguments. In the case of micro-

crystalline samples, the highly conducting region at

the interface between B2O3 and Li2O grains does not

play a role since its width is negligible compared to the

grain sizes, and conducting paths can open up only

when two Li2O grains get in direct contact to each

other. Qualitatively, we can expect a percolating

conducting path when the Li2O concentration gets

larger than 0.3 (i.e., p � 0:7), which is between the

percolation threshold of spheres in a three dimensional

continuum percolation model and the percolation

threshold of sites in the simple cubic lattice.

In the case of nanocrystalline samples, however,

the width of the highly conducting interface becomes

comparable to the grain sizes. In this case, the highly

conducting region can act as a bridge between two

Li2O grains not in direct contact to each other,

opening up additional paths for Li ions. A percolating

conducting path can be disrupted only at much higher

concentrations of B2O3 than for micrometer sized

grains. Again, the value suggested by the experiment

is in the expected regime.

To describe the actual dependence of the dc

conductivity of Li2O :B2O3 composites, sdc�p�, on

the insulator concentration p, Indris et al. employed a

continuum percolation model similar to that studied

earlier for dispersed ionic conductors [35]. In this

model, the size of dispersed particles is considered

explicitly and the conductivity is estimated by means

of the effective medium approximation (EMA),

yielding an analytical expression for sdc�p�.
Denoting by P0�p�, PA�p� and PB�p�, the concentra-

tions of the insulator, the highly conducting diphase

boundaries and the ionic conductor, respectively,

sdc�p� is given within EMA by,

sdc�p� � s0
B

1

zÿ 2
ÿA� �A2 � 2t�zÿ 2ÿ zP0��1=2
h i

�22�

where A � t�1ÿ zPA=2� � �1ÿ zPB=2�, z is a para-

meter determining the percolation threshold pc at

which sdc � 0, and t � s0
A=s

0
B is (as before) the

Fig. 9. Plot of the dc-conductivities of the micro- and

nanocrystalline composites vs insulator volume fraction p at

T � 433 K. The conductivity of the nanocrystalline samples (open

circles) shows an enhancement up to a maximum at

p&0:7 �x& 0:5�, while the conductivity of the microcrystalline

composites ( full circles) decreases monotonically. The lines show

the dc-conductivities obtained from the continuum percolation

model discussed in the text (after [38]).
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enhancement factor, de®ned as the ratio between

the conductivities of the highly conducting interface

and of pure Li2O, respectively. For details of the

treatment, we refer to [35,38]. The concentrations of

the three components are given by P0�p� � p,

PB�p� � �1ÿ p�Z3

and PA�p� � 1ÿ pÿ PB�p�, with

Z � R� l
R

�23�

where R is the radius of the particles (R%10 nm for

the nanoparticles and R%5mm for the microparticles)

and l between 1 and 2 nm.

According to Eq. (22), the percolation threshold for

the disruption of conducting paths, pc, is given by

pc � �zÿ 2�=z. Thus, from our previous discussion,

we expect that for nanocrystalline samples, pc&0:96,

obtaining znano � 59, while in the microcrystalline

case pc&0:7 and zpoly � 7. The remaining parameters,

except the interface conductivity s0
A can be easily

estimated from the measurements. The theoretical

results, obtained for a reasonable ®t of s0
A, are

displayed in Fig. 9 as straight thin lines. The

agreement is quantitatively good in view of the

simplicity of the model employed.

Both nanocrystalline and microcrystalline materials

have been described within the same model. The

striking difference between both is the parameter Z;

Zÿ 1 describes the thickness of the interface in relation

to the grain size. For Z close to one, the blocking effect

of the large insulating grains dominates, and the dc

conductivity decreases monotonically, while for

smaller grain sizes a similar behavior as in the classic

dispersed ionic conductors occurs.
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